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Evaluating CockroachDB vs YugabyteDB
PostgreSQL features, architecture, benchmarks

Karthik Ranganathan, Co-founder/CTO, Yugabyte
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Distributed SQL databases

SQL capabilities + resilient to failures + scalable + geo-distributed

vs
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is a distributed SQL database built for:

● high performance (low Latency)

● cloud native (run on Kubernetes, VMs, bare metal)

● open source (Apache 2.0)
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Evaluation Criteria

● RDBMS feature support

● Performance - using YCSB

● At-scale performance

● Architectural takeaways

● Licensing model

In parallel, we’ll also look at architectural differences.
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RDBMS Feature Support
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Both DBs support PostgreSQL wire-protocol

However, there are architectural differences
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● Reuses PostgreSQL codebase ● Rewritten SQL layer
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Reusing PostgreSQL vs Rewriting
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Cockroach Labs blog post:

Yugabyte uses PostgreSQL for SQL optimization, and a 
portion of execution.

Reusing PostgreSQL results in monolithic SQL architecture

INCORRECT!

❌



10                                                                                                     © 2020 All rights reserved.

How YugabyteDB is architected:

Enhancing PostgreSQL to a distributed architecture 
is being accomplished in three phases:

● SQL layer on distributed DB
● Perform more SQL pushdowns
● Enhance optimizer
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Phase #1 - SQL layer on distributed DB
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Phase #2: Perform SQL Pushdowns
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Phase #3: Enhance PostgreSQL Optimizer

• Table statistics based hints
• Piggyback on current PostgreSQL optimizer that uses table statistics

• Geographic location based hints
• Based on “network” cost
• Factors in network latency between nodes and tablet placement

• Rewriting query plan for distributed SQL
• Extend PostgreSQL “plan nodes” for distributed execution
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Advantages of reusing PostgreSQL

PostgreSQL regression tests currently in YugabyteDB.

Aim: get to 100% coverage 

● Support advanced RDBMS features

● Robust design, code, documentation by PostgreSQL
 

● Keep quality high
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Performance
Using YCSB
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YCSB Benchmark Comparison

YSQL 2.0 results 
(reported by Cockroach Labs)

CRDB v19.2.0 results
(reported by Cockroach Labs 
with custom driver)

YSQL 2.1 results
(reported by Yugabyte with 
custom driver)

YCQL 2.1 results
(reported by Yugabyte with 
standard driver)
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YugabyteDB takeaways

● YSQL perf dramatically increased from v2.0 to v2.1 

● YCQL performance is much higher

● Over time, YSQL perf will match that of YCQL
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Overall takeaways

● Issue #1: vendor-specific benchmarks are hard to run 

● Issue #2: These benchmarks have too little data

● Repeat at scale:
○ Use standard YCSB driver with JDBC binding
○ Use large datasets to understand perf at scale
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Performance at scale
YCSB with 450M rows
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Benchmark details
450M rows (~1.3TB) loaded using the YCSB benchmark

● 3 node cluster, replication factor = 3 (in AWS, us-west-2)

● Each node was c5.4xlarge (16 vCPU, 2 x 5TB gp2 EBS SSD)

● CockroachDB v19.2.6 (range sharding, hash not GA at the time)

● YugabyteDB v2.1 (using YSQL, range and hash sharding)

● Default isolation levels for both DBs
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Loading Data - YugabyteDB was 3x faster
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CockroachDB throughput drops over time
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YugabyteDB throughput
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● Reuses PostgreSQL codebase

● RocksDB enhanced

● C/C++ for higher perf

● Sustains high write throughput

● Newly written SQL layer

● RocksDB blackbox

● Go/C++ (inter-language switch)

● Write throughput drops over time
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● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher throughput, lower latency

○ RocksDB enhanced

○ C/C++ for higher perf

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)
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Performance with larger datasets

How does perf of each DB get affected when going from a 
small dataset to large dataset (450M rows)?



29                                                                                                     © 2020 All rights reserved.



30                                                                                                     © 2020 All rights reserved.



31                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher throughput, lower latency

○ RocksDB enhanced

○ C/C++ for higher perf

● Large datasets: 9% lower throughput, 

11% more latency

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)

● Large datasets: 51% lower throughput, 

180% more latency
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Architectural takeaways
Observations loading 1B rows
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Loading 1B rows through YCSB
3TB total dataset (1TB per node)

● YugabyteDB completed loading successfully in 26 hrs 

● CockroachDB failed to load in reasonable time

● Throughput kept dropping over time
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Next step - investigate why CockroachDB was 
not able to load 1B rows
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Issue #1: CRDB unevenly uses multiple disks

Two disks supplied, only one disk was utilized.
Because CRDB shards (ranges) reuse same RocksDB
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YugabyteDB can leverage multiple disks

Two disks supplied, both are utilized.
Each YugabyteDB shard (tablet) uses separate RocksDB
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● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher throughput, lower latency

○ RocksDB enhanced

○ C/C++ for higher perf

● Large datasets: 9% lower throughput, 

11% more latency

● Leverage multiple disks

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)

● Large datasets: 51% lower throughput, 

180% more latency

● Leverage 1 disk (maybe per table?)
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Issue #2: Compactions affect CRDB perf

Right after loading data, query performance was poor.

Observed: 8.5K reads/sec
6 hours later: 40K reads/sec 
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Read amplification increases with SSTables

More read amplification = DB 
needs to consult more files. 



40                                                                                                     © 2020 All rights reserved.

Solution: wait for many hours
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YugabyteDB perf high right after compaction

Performance right after loading 1B rows
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● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher throughput, lower latency

○ RocksDB enhanced

○ C/C++ for higher perf

● Large datasets: 9% lower throughput, 

11% more latency

● Leverage multiple disks

● Compactions tuned for perf

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)

● Large datasets: 51% lower throughput, 

180% more latency

● Leverage 1 disk (maybe per table?)

● Compactions policy impacts perf
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Issue #3: Backpressure writes

● Disk could become bottleneck
● DB can no longer keep up with writes
● Backpressure client to rate limit
● Happens often in the real world

Loading data in a node with 2 x 5TB EBS gp2 SSDs

CockroachDB goes into a mode where reads are severely penalized



44                                                                                                     © 2020 All rights reserved.



45                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher performance

○ RocksDB enhanced

○ C/C++ for higher perf

● Large datasets: 9% lower throughput, 

11% more latency

● Leverage multiple disks

● Compactions tuned for perf

● Backpressure when overloaded

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)

● Large datasets: 51% lower throughput, 

180% more latency

● Leverage 1 disk (maybe per table?)

● Compactions could affect perf

● No backpressure
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Licensing Model
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Don’t fall for fake open source marketing

❌
❌

PROPRIETARY
FREEMIUM 
SOFTWARE
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Thank You!

We 💛 stars! Give us one
github.com/yugabyte/yugabyte-db

Join our community 
yugabyte.com/slack

https://github.com/yugabyte/yugabyte-db
https://www.yugabyte.com/slack
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Thanks!


