
1                                                                                                     © 2020 All rights reserved.

Evaluating CockroachDB vs YugabyteDB
PostgreSQL features, architecture, benchmarks

Karthik Ranganathan, Co-founder/CTO, Yugabyte



2                                                                                                     © 2020 All rights reserved.

Distributed SQL databases

SQL capabilities + resilient to failures + scalable + geo-distributed

vs



3                                                                                                     © 2020 All rights reserved.

is a distributed SQL database built for:

● high performance (low Latency)

● cloud native (run on Kubernetes, VMs, bare metal)

● open source (Apache 2.0)



4                                                                                                     © 2020 All rights reserved.

Evaluation Criteria

● RDBMS feature support

● Performance - using YCSB

● At-scale performance

● Architectural takeaways

● Licensing model

In parallel, we’ll also look at architectural differences.



5© 2020 All rights reserved.

RDBMS Feature Support



6                                                                                                     © 2020 All rights reserved.

Both DBs support PostgreSQL wire-protocol

However, there are architectural differences



7                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase ● Rewritten SQL layer



8© 2020 All rights reserved.

Reusing PostgreSQL vs Rewriting



9                                                                                                     © 2020 All rights reserved.

Cockroach Labs blog post:

Yugabyte uses PostgreSQL for SQL optimization, and a 
portion of execution.

Reusing PostgreSQL results in monolithic SQL architecture

INCORRECT!

❌



10                                                                                                     © 2020 All rights reserved.

How YugabyteDB is architected:

Enhancing PostgreSQL to a distributed architecture 
is being accomplished in three phases:

● SQL layer on distributed DB
● Perform more SQL pushdowns
● Enhance optimizer



11© 2020 All rights reserved.

Phase #1 - SQL layer on distributed DB



12© 2020 All rights reserved.

Phase #2: Perform SQL Pushdowns



13© 2020 All rights reserved.

Phase #3: Enhance PostgreSQL Optimizer

• Table statistics based hints
• Piggyback on current PostgreSQL optimizer that uses table statistics

• Geographic location based hints
• Based on “network” cost
• Factors in network latency between nodes and tablet placement

• Rewriting query plan for distributed SQL
• Extend PostgreSQL “plan nodes” for distributed execution



14© 2020 All rights reserved.

Advantages of reusing PostgreSQL

PostgreSQL regression tests currently in YugabyteDB.

Aim: get to 100% coverage 

● Support advanced RDBMS features

● Robust design, code, documentation by PostgreSQL
 

● Keep quality high



15© 2020 All rights reserved.

Performance
Using YCSB



16                                                                                                     © 2020 All rights reserved.

YCSB Benchmark Comparison

YSQL 2.0 results 
(reported by Cockroach Labs)

CRDB v19.2.0 results
(reported by Cockroach Labs 
with custom driver)

YSQL 2.1 results
(reported by Yugabyte with 
custom driver)

YCQL 2.1 results
(reported by Yugabyte with 
standard driver)



17                                                                                                     © 2020 All rights reserved.

YugabyteDB takeaways

● YSQL perf dramatically increased from v2.0 to v2.1 

● YCQL performance is much higher

● Over time, YSQL perf will match that of YCQL



18                                                                                                     © 2020 All rights reserved.

Overall takeaways

● Issue #1: vendor-specific benchmarks are hard to run 

● Issue #2: These benchmarks have too little data

● Repeat at scale:
○ Use standard YCSB driver with JDBC binding
○ Use large datasets to understand perf at scale



19© 2020 All rights reserved.

Performance at scale
YCSB with 450M rows



20                                                                                                     © 2020 All rights reserved.

Benchmark details
450M rows (~1.3TB) loaded using the YCSB benchmark

● 3 node cluster, replication factor = 3 (in AWS, us-west-2)

● Each node was c5.4xlarge (16 vCPU, 2 x 5TB gp2 EBS SSD)

● CockroachDB v19.2.6 (range sharding, hash not GA at the time)

● YugabyteDB v2.1 (using YSQL, range and hash sharding)

● Default isolation levels for both DBs



21                                                                                                     © 2020 All rights reserved.

Loading Data - YugabyteDB was 3x faster



22                                                                                                     © 2020 All rights reserved.

CockroachDB throughput drops over time



23                                                                                                     © 2020 All rights reserved.

YugabyteDB throughput



24                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase

● RocksDB enhanced

● C/C++ for higher perf

● Sustains high write throughput

● Newly written SQL layer

● RocksDB blackbox

● Go/C++ (inter-language switch)

● Write throughput drops over time



25                                                                                                     © 2020 All rights reserved.



26                                                                                                     © 2020 All rights reserved.



27                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher throughput, lower latency

○ RocksDB enhanced

○ C/C++ for higher perf

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)



28                                                                                                     © 2020 All rights reserved.

Performance with larger datasets

How does perf of each DB get affected when going from a 
small dataset to large dataset (450M rows)?



29                                                                                                     © 2020 All rights reserved.



30                                                                                                     © 2020 All rights reserved.



31                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher throughput, lower latency

○ RocksDB enhanced

○ C/C++ for higher perf

● Large datasets: 9% lower throughput, 

11% more latency

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)

● Large datasets: 51% lower throughput, 

180% more latency



32© 2020 All rights reserved.

Architectural takeaways
Observations loading 1B rows



33                                                                                                     © 2020 All rights reserved.

Loading 1B rows through YCSB
3TB total dataset (1TB per node)

● YugabyteDB completed loading successfully in 26 hrs 

● CockroachDB failed to load in reasonable time

● Throughput kept dropping over time



34                                                                                                     © 2020 All rights reserved.

Next step - investigate why CockroachDB was 
not able to load 1B rows



35                                                                                                     © 2020 All rights reserved.

Issue #1: CRDB unevenly uses multiple disks

Two disks supplied, only one disk was utilized.
Because CRDB shards (ranges) reuse same RocksDB



36                                                                                                     © 2020 All rights reserved.

YugabyteDB can leverage multiple disks

Two disks supplied, both are utilized.
Each YugabyteDB shard (tablet) uses separate RocksDB



37                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher throughput, lower latency

○ RocksDB enhanced

○ C/C++ for higher perf

● Large datasets: 9% lower throughput, 

11% more latency

● Leverage multiple disks

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)

● Large datasets: 51% lower throughput, 

180% more latency

● Leverage 1 disk (maybe per table?)



38                                                                                                     © 2020 All rights reserved.

Issue #2: Compactions affect CRDB perf

Right after loading data, query performance was poor.

Observed: 8.5K reads/sec
6 hours later: 40K reads/sec 



39                                                                                                     © 2020 All rights reserved.

Read amplification increases with SSTables

More read amplification = DB 
needs to consult more files. 



40                                                                                                     © 2020 All rights reserved.

Solution: wait for many hours



41                                                                                                     © 2020 All rights reserved.

YugabyteDB perf high right after compaction

Performance right after loading 1B rows



42                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher throughput, lower latency

○ RocksDB enhanced

○ C/C++ for higher perf

● Large datasets: 9% lower throughput, 

11% more latency

● Leverage multiple disks

● Compactions tuned for perf

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)

● Large datasets: 51% lower throughput, 

180% more latency

● Leverage 1 disk (maybe per table?)

● Compactions policy impacts perf



43                                                                                                     © 2020 All rights reserved.

Issue #3: Backpressure writes

● Disk could become bottleneck
● DB can no longer keep up with writes
● Backpressure client to rate limit
● Happens often in the real world

Loading data in a node with 2 x 5TB EBS gp2 SSDs

CockroachDB goes into a mode where reads are severely penalized



44                                                                                                     © 2020 All rights reserved.



45                                                                                                     © 2020 All rights reserved.

● Reuses PostgreSQL codebase

● Sustains high write throughput

● Higher performance

○ RocksDB enhanced

○ C/C++ for higher perf

● Large datasets: 9% lower throughput, 

11% more latency

● Leverage multiple disks

● Compactions tuned for perf

● Backpressure when overloaded

● Newly written SQL layer

● Write throughput drops over time

● Lower performance

○ RocksDB blackbox

○ Go/C++ (inter-language switch)

● Large datasets: 51% lower throughput, 

180% more latency

● Leverage 1 disk (maybe per table?)

● Compactions could affect perf

● No backpressure



46© 2020 All rights reserved.

Licensing Model



47                                                                                                     © 2020 All rights reserved.



48                                                                                                     © 2020 All rights reserved.

Don’t fall for fake open source marketing

❌
❌

PROPRIETARY
FREEMIUM 
SOFTWARE



49© 2020 All rights reserved.

Thank You!

We 💛 stars! Give us one
github.com/yugabyte/yugabyte-db

Join our community 
yugabyte.com/slack

https://github.com/yugabyte/yugabyte-db
https://www.yugabyte.com/slack


50© 2020 All rights reserved.

Thanks!


