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Who am I?
~

Who do I think you are?
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• You know PostgreSQL very well

• Not a week goes by without you typing SQL at the psql prompt

• I hope that you know PL/pgSQL and use stored procedures

• You don’t need me to tell you about the reasons to use SQL

• You don’t mind that Codd and Date laid the foundations
as long ago as the nineteen-sixties
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History recap:

In pursuit of scalability
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• Monolithic SQL databases:  the only survivor of the pre-SQL era

• Sharding in application code among many monolithic SQL databases

• NoSQL:  in with “shared nothing”;  out with SQL

• Google develops Spanner for internal use: “shared nothing” and SQL

• Google offers Spanner as proprietary DBaaS & publishes the algorithms

• Open source distributed SQL databases arrive

• At all stages, various hybrids are born and live on
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History recap:

In pursuit of fault tolerance / HA
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• Companies had their own computers on their own premises.
Weekend shutdown. Full backup. Tapes stored off site.

• Shutdowns less and less frequent. Incremental backup.

• Databases back Internet-facing apps. Primary/Standby arrives.

• NoSQL:  in with “shared nothing” and
low-level automatically replicated sharding; out with SQL deluxe.

• Distributed SQL: having your cake and eating it, especially with

• the Postgres SQL processing code

• on a Spanner-inspired storage layer
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What it means to have

the Postgres SQL processing code

on a Spanner-inspired storage layer
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meta-meta-meta demo: SQL Feature Depth

• Traditional SQL 

• Data types
• Relational integrity (Foreign keys)
• Built-in functions
• Expressions
• JSON column type
• Secondary indexes
• JOINs
• Transactions
• Views

• Advanced SQL

• Partial indexes

• Stored procedures

• Triggers

• Extensions

• And more ...

• The YugabyteDB documentation has code examples
that you can copy-and-paste into psql and our own ysqlsh

• My posts on blog.yugabyte.com/author/bryn/ have code examples
that you can copy-and-paste into psql and ysqlsh
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Background reading — blog.yugabyte.com
• High-level “What” and “Why”

• What is Distributed SQL?
• Distributed SQL vs. NewSQL
• Why We Built YugabyteDB by Reusing the PostgreSQL Query Layer
• Spanning the Globe without Google Spanner

• Distributed PostgreSQL on a Google Spanner Architecture
• Storage layer
• Query layer

• PostgreSQL compatibility
• Google Search: "bryn Llewellyn" site:blog.yugabyte.com
• Eight technical SQL and PL/plSQL posts with code examples
• Why I Moved from Oracle to YugaByte
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What is YugabyteDB?
~

Why might you be interested?
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YugabyteDB

Arbitrarily scalable
Intrinsic auto-sharding. Add nodes on demand. Low Latency 
Queries. Millions of IOPS in Throughput. TBs per Node.

No cloud vendor lock-in
Cloud Native. Multi-Cloud &  Kubernetes Ready. 100% 
Open Source (Apache 2.0)

Distributed SQL 
Fully PostgreSQL Compatible

Intrinsically fault tolerant
Out-of-the-box maximum availability architecture
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And now for something completely 
different…

~
The substance
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Design Goals
• PostgreSQL compatible

• Re-uses PostgreSQL query layer
• New changes do not break existing PostgreSQL functionality

• Enable migrating to newer PostgreSQL versions
• New features are implemented in a modular fashion
• Integrate with new PostgreSQL features as they are available
• E.g. Moved from PostgreSQL 10.4 → 11.2 in 2 weeks!

• Cloud native architecture
• Fully decentralized to enable scaling to 1000s of nodes 
• Tolerate rack/zone and datacenter/region failures automatically
• Run natively in containers and Kubernetes
• Zero-downtime rolling software upgrades and machine reconfig
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Functional Architecture

DOCDB 
Spanner-Inspired Distributed Document Store

Cloud Neutral: No Specialized Hardware Needed

Yugabyte SQL (YSQL)
PostgreSQL-Compatible Distributed SQL API
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• Each SQL table is sharded into ~10 so-called tablets
• Each SQL table is mapped to a DocDB table

• DocDB manages tablets as a set of RF tablet peer replicas

• Each tablet peer (for some table) is on its own node.

• RF is the so-called replication factor.

• Minimum useful value is 3

• Typical choice is 3

• Bigger values, 5, 7, and so on, bring more fault tolerance

• Can survive (with no safety net) on two (or one, supporting no writes)

Tablets, tablet peers, nodes, and replication
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• Each tablet peer for a given table is on a different node
• One of these (by dynamic election) is the current leader

• The other peers in the same tablet are currently followers

Tablets, tablet peers, nodes, and replication
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• Each node has tablet peers from many different tables
• You can have many more than RF nodes , and the node count needn’t be odd

• If a node “vanishes”, all the tablet peers that were leaders there are then lead on surviving 
nodes

• The surviving nodes, for each tablet, that used to host only followers, automatically elect 
one among themselves to be the new leader for that tablet

• This is the clue to YugabyteDB’s intrinsic, automatic fault tolerance

Tablets, tablet peers, nodes, and replication
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• You can add a node to the cluster, or decommission one at any time
• This is the clue to demand-based scalability

• The new node automatically takes over tablet peers over a period of several minutes

Tablets, tablet peers, nodes, and replication
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PostgreSQL Transformed into Distributed SQL
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Create Table & Insert Data



23© 2019 All rights reserved.

YSQL Tables

• Tables
• Each table maps to one DocDB table
• Each DocDB table is sharded into multiple tablets

• System tables
• PostgreSQL system catalog tables map to special DocDB tables
• All such special DocDB tables use a single tablet

• (Internal) DocDB tables
• Have same key → document format
• Schema enforcement using the table schema metadata
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System Catalog Tables are Special Tables

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT
One tablet of DocDB 

System Catalog
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Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

1) CREATE TABLE
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Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

2) RECORD SCHEMA
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Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

3) RAFT REPLICATE
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Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
4) CREATE TABLETS

t1 t2 t3 t1 t2 t3 t1 t2 t3
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Insert Data into Tables

• Primary keys
• The primary key column(s) map to a single document key
• Each row maps to one document in DocDB
• Tables without primary key use an internal ID (logically a row-id)

• Secondary indexes
• Each index maps to a separate distributed DocDB table
• DML implemented using DocDB distributed transactions
• E.g: insert into table with one index will perform the following:

BEGIN DOCDB DISTRIBUTED TRANSACTION
    insert into index values (…)
    insert into table values (…)
COMMIT
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Insert Data 

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT ROW

t2 t2 t2
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Insert Data 

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT INTO t2 TABLET LEADER

t2 t2 t2
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Insert Data 

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

RAFT REPLICATE DATA

t2 t2 t2
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Distributed Transactions
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Fully Decentralized Architecture

• No single point of failure or bottleneck
• Any node can act as a Transaction Manager

• Transaction status table distributed across multiple nodes
• Tracks state of active transactions

• Transactions have 3 states    
• Pending
• Committed
• Aborted

• Reads served only for Committed Transactions
• Clients never see inconsistent data
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Distributed Transactions - Write Path 
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Isolation Levels

• Serializable Isolation
• Read-write conflicts get auto-detected
• Both reads and writes in read-write txns need provisional records
• Maps to SERIALIZABLE in PostgreSQL

• Snapshot Isolation
• Write-write conflicts get auto-detected
• Only writes in read-write txns need provisional records
• Maps to REPEATABLE READ, READ COMMITTED & READ UNCOMMITTED in PostgreSQL

• Read-only Transactions 
• Lock free
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Summary
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Most Advanced Open Source Distributed SQL 

Google Spanner
Query Layer Storage Layer

World’s Most Advanced 
Open Source SQL Engine 

World’s Most Advanced 
Distributed OLTP Architecture

Reuse Inspiration



44© 2019 All rights reserved.

Slight return — blog.yugabyte.com
• High-level “What” and “Why”

• What is Distributed SQL?
• Distributed SQL vs. NewSQL
• Why We Built YugabyteDB by Reusing the PostgreSQL Query Layer
• Spanning the Globe without Google Spanner

• Distributed PostgreSQL on a Google Spanner Architecture
• Storage layer
• Query layer

• PostgreSQL compatibility
• Google Search: "bryn Llewellyn" site:blog.yugabyte.com
• Eight technical SQL and PL/plSQL posts with code examples
• Why I Moved from Oracle to YugaByte



45© 2019 All rights reserved.

Questions?

Download 
download.yugabyte.com

Join Slack Discussions 
yugabyte.com/slack

Star on GitHub
github.com/yugabyte/yugabyte-db

https://download.yugabyte.com
https://www.yugabyte.com/slack
https://github.com/yugabyte/yugabyte-db

