
1© 2019 All rights reserved.

YugabyteDB:
a distributed PostgreSQL database

Bryn Llewellyn
Developer Advocate, Yugabyte

2© 2019 All rights reserved.

Who am I?
~

Who do I think you are?

3© 2019 All rights reserved.

Bryn Llewellyn
Developer Advocate, Yugabyte

4© 2019 All rights reserved.

• You know PostgreSQL very well

• Not a week goes by without you typing SQL at the psql prompt

• I hope that you know PL/pgSQL and use stored procedures

• You don’t need me to tell you about the reasons to use SQL

• You don’t mind that Codd and Date laid the foundations
as long ago as the nineteen-sixties

5© 2019 All rights reserved.

History recap:

In pursuit of scalability

6© 2019 All rights reserved.

• Monolithic SQL databases: the only survivor of the pre-SQL era

• Sharding in application code among many monolithic SQL databases

• NoSQL: in with “shared nothing”; out with SQL

• Google develops Spanner for internal use: “shared nothing” and SQL

• Google offers Spanner as proprietary DBaaS & publishes the algorithms

• Open source distributed SQL databases arrive

• At all stages, various hybrids are born and live on

7© 2019 All rights reserved.

History recap:

In pursuit of fault tolerance / HA

8© 2019 All rights reserved.

• Companies had their own computers on their own premises.
Weekend shutdown. Full backup. Tapes stored off site.

• Shutdowns less and less frequent. Incremental backup.

• Databases back Internet-facing apps. Primary/Standby arrives.

• NoSQL: in with “shared nothing” and
low-level automatically replicated sharding; out with SQL deluxe.

• Distributed SQL: having your cake and eating it, especially with

• the Postgres SQL processing code

• on a Spanner-inspired storage layer

9© 2019 All rights reserved.

What it means to have

the Postgres SQL processing code

on a Spanner-inspired storage layer

10© 2019 All rights reserved.

meta-meta-meta demo: SQL Feature Depth

• Traditional SQL

• Data types
• Relational integrity (Foreign keys)
• Built-in functions
• Expressions
• JSON column type
• Secondary indexes
• JOINs
• Transactions
• Views

• Advanced SQL

• Partial indexes

• Stored procedures

• Triggers

• Extensions

• And more ...

• The YugabyteDB documentation has code examples
that you can copy-and-paste into psql and our own ysqlsh

• My posts on blog.yugabyte.com/author/bryn/ have code examples
that you can copy-and-paste into psql and ysqlsh

11© 2019 All rights reserved.

Background reading — blog.yugabyte.com
• High-level “What” and “Why”

• What is Distributed SQL?
• Distributed SQL vs. NewSQL
• Why We Built YugabyteDB by Reusing the PostgreSQL Query Layer
• Spanning the Globe without Google Spanner

• Distributed PostgreSQL on a Google Spanner Architecture
• Storage layer
• Query layer

• PostgreSQL compatibility
• Google Search: "bryn Llewellyn" site:blog.yugabyte.com
• Eight technical SQL and PL/plSQL posts with code examples
• Why I Moved from Oracle to YugaByte

12© 2019 All rights reserved.

What is YugabyteDB?
~

Why might you be interested?

13© 2019 All rights reserved.

YugabyteDB

Arbitrarily scalable
Intrinsic auto-sharding. Add nodes on demand. Low Latency
Queries. Millions of IOPS in Throughput. TBs per Node.

No cloud vendor lock-in
Cloud Native. Multi-Cloud & Kubernetes Ready. 100%
Open Source (Apache 2.0)

Distributed SQL
Fully PostgreSQL Compatible

Intrinsically fault tolerant
Out-of-the-box maximum availability architecture

14© 2019 All rights reserved.

And now for something completely
different…

~
The substance

15© 2019 All rights reserved.

Design Goals
• PostgreSQL compatible

• Re-uses PostgreSQL query layer
• New changes do not break existing PostgreSQL functionality

• Enable migrating to newer PostgreSQL versions
• New features are implemented in a modular fashion
• Integrate with new PostgreSQL features as they are available
• E.g. Moved from PostgreSQL 10.4 → 11.2 in 2 weeks!

• Cloud native architecture
• Fully decentralized to enable scaling to 1000s of nodes
• Tolerate rack/zone and datacenter/region failures automatically
• Run natively in containers and Kubernetes
• Zero-downtime rolling software upgrades and machine reconfig

16© 2019 All rights reserved.

Functional Architecture

DOCDB
Spanner-Inspired Distributed Document Store

Cloud Neutral: No Specialized Hardware Needed

Yugabyte SQL (YSQL)
PostgreSQL-Compatible Distributed SQL API

17© 2019 All rights reserved.

• Each SQL table is sharded into ~10 so-called tablets
• Each SQL table is mapped to a DocDB table

• DocDB manages tablets as a set of RF tablet peer replicas

• Each tablet peer (for some table) is on its own node.

• RF is the so-called replication factor.

• Minimum useful value is 3

• Typical choice is 3

• Bigger values, 5, 7, and so on, bring more fault tolerance

• Can survive (with no safety net) on two (or one, supporting no writes)

Tablets, tablet peers, nodes, and replication

18© 2019 All rights reserved.

• Each tablet peer for a given table is on a different node
• One of these (by dynamic election) is the current leader

• The other peers in the same tablet are currently followers

Tablets, tablet peers, nodes, and replication

19© 2019 All rights reserved.

• Each node has tablet peers from many different tables
• You can have many more than RF nodes , and the node count needn’t be odd

• If a node “vanishes”, all the tablet peers that were leaders there are then lead on surviving
nodes

• The surviving nodes, for each tablet, that used to host only followers, automatically elect
one among themselves to be the new leader for that tablet

• This is the clue to YugabyteDB’s intrinsic, automatic fault tolerance

Tablets, tablet peers, nodes, and replication

20© 2019 All rights reserved.

• You can add a node to the cluster, or decommission one at any time
• This is the clue to demand-based scalability

• The new node automatically takes over tablet peers over a period of several minutes

Tablets, tablet peers, nodes, and replication

21© 2019 All rights reserved.

PostgreSQL Transformed into Distributed SQL

22© 2019 All rights reserved.

Create Table & Insert Data

23© 2019 All rights reserved.

YSQL Tables

• Tables
• Each table maps to one DocDB table
• Each DocDB table is sharded into multiple tablets

• System tables
• PostgreSQL system catalog tables map to special DocDB tables
• All such special DocDB tables use a single tablet

• (Internal) DocDB tables
• Have same key → document format
• Schema enforcement using the table schema metadata

24© 2019 All rights reserved.

System Catalog Tables are Special Tables

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT
One tablet of DocDB

System Catalog

25© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

1) CREATE TABLE

26© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

2) RECORD SCHEMA

27© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

3) RAFT REPLICATE

28© 2019 All rights reserved.

Create a Table

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

CLIENT
4) CREATE TABLETS

t1 t2 t3 t1 t2 t3 t1 t2 t3

29© 2019 All rights reserved.

Insert Data into Tables

• Primary keys
• The primary key column(s) map to a single document key
• Each row maps to one document in DocDB
• Tables without primary key use an internal ID (logically a row-id)

• Secondary indexes
• Each index maps to a separate distributed DocDB table
• DML implemented using DocDB distributed transactions
• E.g: insert into table with one index will perform the following:

BEGIN DOCDB DISTRIBUTED TRANSACTION
 insert into index values (…)
 insert into table values (…)
COMMIT

30© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT ROW

t2 t2 t2

31© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

INSERT INTO t2 TABLET LEADER

t2 t2 t2

32© 2019 All rights reserved.

Insert Data

……

Stateless
Postgres

Stateless
Postgres

Stateless
Postgres

DocDB DocDB DocDB

SQL CLIENT

RAFT REPLICATE DATA

t2 t2 t2

33© 2019 All rights reserved.

Distributed Transactions

34© 2019 All rights reserved.

Fully Decentralized Architecture

• No single point of failure or bottleneck
• Any node can act as a Transaction Manager

• Transaction status table distributed across multiple nodes
• Tracks state of active transactions

• Transactions have 3 states
• Pending
• Committed
• Aborted

• Reads served only for Committed Transactions
• Clients never see inconsistent data

35© 2019 All rights reserved.

Distributed Transactions - Write Path

36© 2019 All rights reserved.

Distributed Transactions - Write Path

37© 2019 All rights reserved.

Distributed Transactions - Write Path

38© 2019 All rights reserved.

Distributed Transactions - Write Path

39© 2019 All rights reserved.

Distributed Transactions - Write Path

40© 2019 All rights reserved.

Distributed Transactions - Write Path

41© 2019 All rights reserved.

Isolation Levels

• Serializable Isolation
• Read-write conflicts get auto-detected
• Both reads and writes in read-write txns need provisional records
• Maps to SERIALIZABLE in PostgreSQL

• Snapshot Isolation
• Write-write conflicts get auto-detected
• Only writes in read-write txns need provisional records
• Maps to REPEATABLE READ, READ COMMITTED & READ UNCOMMITTED in PostgreSQL

• Read-only Transactions
• Lock free

42© 2019 All rights reserved.

Summary

43© 2019 All rights reserved.

Most Advanced Open Source Distributed SQL

Google Spanner
Query Layer Storage Layer

World’s Most Advanced
Open Source SQL Engine

World’s Most Advanced
Distributed OLTP Architecture

Reuse Inspiration

44© 2019 All rights reserved.

Slight return — blog.yugabyte.com
• High-level “What” and “Why”

• What is Distributed SQL?
• Distributed SQL vs. NewSQL
• Why We Built YugabyteDB by Reusing the PostgreSQL Query Layer
• Spanning the Globe without Google Spanner

• Distributed PostgreSQL on a Google Spanner Architecture
• Storage layer
• Query layer

• PostgreSQL compatibility
• Google Search: "bryn Llewellyn" site:blog.yugabyte.com
• Eight technical SQL and PL/plSQL posts with code examples
• Why I Moved from Oracle to YugaByte

45© 2019 All rights reserved.

Questions?

Download
download.yugabyte.com

Join Slack Discussions
yugabyte.com/slack

Star on GitHub
github.com/yugabyte/yugabyte-db

https://download.yugabyte.com
https://www.yugabyte.com/slack
https://github.com/yugabyte/yugabyte-db

