
1                                                                                                     © 2019 All rights reserved.

Distributed Transactions Without Atomic Clocks
Sometimes, it’s all just about good timing

Karthik Ranganathan, co-founder & CTO



2© 2019 All rights reserved.

Introduction



3© 2019 All rights reserved.

Designing the Perfect Distributed SQL Database

Skyrocketing adoption of PostgreSQL for 
cloud-native applications

PostgreSQL is not highly available or 
horizontally scalable

Spanner does not have the RDBMS feature set

Google Spanner

The first horizontally scalable, 
strongly consistent, relational 

database service



4© 2019 All rights reserved.

Design Goals for YugabyteDB

PostgreSQL Google Spanner YugabyteDB

SQL Ecosystem ✓
Massively adopted

✘
New SQL flavor 

✓
Reuse PostgreSQL

RDBMS Features
✓

Advanced
Complex

✘
Basic

cloud-native

✓
Advanced

Complex and cloud-native 

Highly Available ✘ ✓ ✓

Horizontal Scale ✘ ✓ ✓

Distributed Txns ✘ ✓ ✓

Data Replication Async Sync Sync + Async

Transactional, distributed SQL database designed for resilience and scale  

● 100% open source
● PostgreSQL compatible
● Enterprise-grade RDBMS

○ Day 2 operational simplicity

○ Secure deployments

● Public, private, hybrid clouds
● High performance



5© 2019 All rights reserved.

YugabyteDB Reuses PostgreSQL Query Layer



6© 2019 All rights reserved.

Transactions are fundamental to SQL…

But they require time synchronization between nodes.

Why?

Let’s look at single-row transactions before answering this



7© 2019 All rights reserved.

Single-Row Transactions:
Raft Consensus



8© 2019 All rights reserved.

Distributing Data For Horizontal Scalability

tablet 1’

● User tables sharded into tablets

● Tablet = group of rows

● Sharding is transparent to user

● Assume 3-nodes across zones

● How to distribute data across 

nodes?



9© 2019 All rights reserved.

Tablets Use Raft-Based Replication

tablet 1’

B: Tablet Peer

Raft Algorithm for replicating 
data: per-row linearizability

Tablet data
C: Tablet Peer

A: Tablet Peer

B: Tablet Peer C: Tablet Peer

A: Tablet Leader

1. Start leader election

2. Leader serves queries

User queries



10© 2019 All rights reserved.

Replication in a 3 Node Cluster

tablet 1’

● Assume rf = 3

● Survives 1 node or zone failure

● Tablets replicated across 3 nodes

● Follower (replica) tablets balanced 

across nodes in cluster

Diagram with replication factor = 3



11© 2019 All rights reserved.

No Time Synchronization Needed So Far

YugabyteDB Raft replication based on: 

leader leases + time intervals + CLOCK_MONOTONIC

From Jepsen Testing Report:



12© 2019 All rights reserved.

Need for Time Synchronization: 
Distributed Transactions



13© 2019 All rights reserved.

Let’s Take a Simple Example Scenario

tablet 1’

User: 

● Deposit followed by withdrawal

● A user has $50 in bank account

● Deposit $100, new balance = $150

● Withdraw $70, should be ok always

Cluster: 

● Nodes have clock skew

● Node A is 100ms ahead of node B

● Deposit on Node A 

● Withdraw from B, 50ms after deposit

Node A
Time = 1100

Node B
Time = 1000

… 

Balance = $50 , time = initially



14© 2019 All rights reserved.

Node A
Time = 1100

Node B
Time = 1000

… 

Balance = $50 , time = initially

Deposit $100



15© 2019 All rights reserved.

Node A
Time = 1100

Node B
Time = 1000

… 

Balance = $50 , time = initially
Balance = $150 , time = 1100

Deposit $100

Add $100 to balance  
at time = 1100



16© 2019 All rights reserved.

Node A
Time = 1150

Node B
Time = 1050

… 

Balance = $50 , time = initially
Balance = $150 , time = 1100



17© 2019 All rights reserved.

Node A
Time = 1150

Node B
Time = 1050

… 

Balance = $50 , time = initially
Balance = $150 , time = 1100

Withdraw $100

Check balance at 
    time = 1050
Balance = $50
Insufficient funds!

??!!



18© 2019 All rights reserved.

Time Sync Needed For Distributed Txns Also

tablet 1’

k1 and k2 may belong to different shards

BEGIN TXN
  UPDATE k1
  UPDATE k2
COMMIT

Belong to different Raft groups on completely different nodes



19© 2019 All rights reserved.

What Do Distributed Transactions Need?

tablet 1’

Updates should get written at the same time

Raft Leader Raft Leader

BEGIN TXN
  UPDATE k1
  UPDATE k2
COMMIT

But how will nodes agree on time?



20© 2019 All rights reserved.

Time Synchronization:
Timestamp Oracle vs Distributed Time Sync



21© 2019 All rights reserved.

Timestamp Oracle - Google Percolator, Apache Omid

● Not scalable

○ Bottleneck in system

● Poor multi-region deployments

○ High latency

○ Low availability

● Prediction 

○ Clock sync will improve esp in public 

clouds over time



22© 2019 All rights reserved.

1. Timestamp Oracle gets 
partitioned away from rest of 
the cluster

2. Remote transactions fail 
without connectivity to the 
Timestamp Oracle



23© 2019 All rights reserved.

● Scalable

○ Only nodes involved in a txn need to 

coordinate

● Multi-region deployments

○ Distributed, region-local time 

synchronization

● Based on 2-phase commit

● Uses hybrid logical clocks

Distributed Time Sync - Google Spanner



24© 2019 All rights reserved.

Distributed Time Sync
Using GPS/Atomic Clock Service



25© 2019 All rights reserved.

Atomic Clock Service

tablet 1’

Atomic Clock Based Time Service:
highly available, globally synchronized clocks, tight error bounds

Most of physical clocks are very poorly synchronized:
ntp has clock skew of 100ms - 250ms

Not a commodity service



26© 2019 All rights reserved.

Guarantees an upper bound on clock skew between nodes. 

TrueTime service used by Google Spanner: 7ms max skew

Let’s try that scenario again with an atomic clock service

How Does an Atomic Clock Service Help?



27© 2019 All rights reserved.

Let’s Take an Example Scenario

Node A
Time = 1107

Node B
Time = 1100

… 

Balance = $50 , time = initially

7ms max clock skew 
between the nodes

GPS/Atomic clock service



28© 2019 All rights reserved.

Node A
Time = 1107

Node B
Time = 1100

… 

Balance = $50 , time = initially

Deposit $100

Add $100 to balance  
at time = 1107



29© 2019 All rights reserved.

Node A
Time = 1107

Node B
Time = 1100

… 

Balance = $50 , time = initially

Deposit $100

Introduce > 7ms commit_wait delay - allows all clocks to catch up

Add $100 to balance  
at time = 1107



30© 2019 All rights reserved.

Node A
Time = 1108

Node B
Time = 1101

… 

Balance = $50 , time = initially

Deposit $100

Add $100 to balance  
at time = 1100

Transaction conflicts detected and handled appropriately

Withdraw $70: CONFLICT



31© 2019 All rights reserved.

Node A
Time = 1117

Node B
Time = 1110

… 

Balance = $50 , time = initially

Deposit $100

All clocks are guaranteed to have caught up to commit time 1107

Add $100 to balance  
at time = 1107



32© 2019 All rights reserved.

Node A
Time = 1117

Node B
Time = 1110

… 

Balance = $50 , time = initially
Balance = $150 , time = 1100

Deposit $100

Add $100 to balance  
at time = 1107



33© 2019 All rights reserved.

Node A
Time = 1117

Node B
Time = 1110

… 

Balance = $50 , time = initially
Balance = $150 , time = 1107

All transactions will now occur after time 1110 and hence are safe



34© 2019 All rights reserved.

Doing This Without Atomic Clocks:
Hybrid Logical Clocks



35© 2019 All rights reserved.

Hybrid Logical Clock (HLC)

tablet 1’

Combine coarsely-synchronized physical clocks with Lamport 
Clocks to track causal relationships

Hybrid Logical Clock = (physical component, logical component)

synchronized using NTP a monotonic counter

Nodes update HLC on each Raft exchange for things like 
heartbeats, leader election and data replication



36© 2019 All rights reserved.

(physical component , logical component)

Physical timestamp
● 52-bit value
● Microsecond precision
● Synchronized using ntp

Logical timestamp
● 12-bit value
● 4096 values max
● Vector clock component

64-bit HLC value



37© 2019 All rights reserved.

Node B Node C

Node A

Wall clock:  1200
HLC time  : (1200, 10)

Wall clock:  1000
HLC time  : (1000, 30)

Wall clock:  1100
HLC time  : (1100, 20)

1. Update requestUTC Time: T0

Skew :  200ms Skew :  100ms



38© 2019 All rights reserved.

Node B Node C

Node A

Wall clock:  1201
HLC time  : (1201, 10)

Wall clock:  1001
HLC time  : (1001, 30)

Wall clock:  1101
HLC time  : (1101, 20)

2. Begin replicating update 
    A → B , HTS =  (1201, 10)

UTC Time: T0 + 1
Time has progressed on 
all nodes by 1 second

Skew :  200ms Skew :  100ms

2. Begin replicating update 
    A → C , HTS =  (1201, 10)



39© 2019 All rights reserved.

Node B Node C

Node A

Wall clock:  1202
HLC time  : (1202, 10)

Wall clock:  1102
HLC time  : (1101, 20)

UTC Time: T0 + 2
Time has progressed on 
all nodes by 2 second

Skew :  100ms

Wall clock:  1002
HLC time  : (1002, 30) (1201, 31)

Skew :  200ms 1ms

3. Finish replication 
    A → B after 1ms,
    HTS = (1201, 10)

3. Replication still in flight
    A → C after 1ms, 
    HTS = (1201, 10)



40© 2019 All rights reserved.

Node B Node C

Node A

Wall clock:  1203
HLC time  : (1203, 10)

Wall clock:  1003
HLC time  : (1201, 31)

Wall clock:  1103
HLC time  : (1103, 20) (1201, 
21)

4. Finish replication 
    A → C after 2ms
    HTS = (1201, 10)

UTC Time: T0 + 3
Time has progressed 
on all nodes by 3ms

Skew :  2ms Skew :  100ms 2ms



41© 2019 All rights reserved.

Uncertainty Time-Windows 
and Max Clock Skew



42© 2019 All rights reserved.

Typically, frequent RPCs between nodes forces quick 

time synchronization in a cluster

Sometimes, this may not be the case. In such cases, DB 

transparently detects conflicting transactions and 

retries them if possible to do so.



43© 2019 All rights reserved.

Node A
Time = 1107

Node B
Time = 1100

… 

Balance = $50 , time = initially

Deposit $100

Introduce > 7ms commit_wait delay - allows all clocks to catch up

Add $100 to balance  
at time = 1107

Recall This Scenario We Discussed Before



44© 2019 All rights reserved.

Node A
Time = 1107

Node B
Time = 1100

… 

Balance = $50 , time = initially

Deposit $100

Introduce > 7ms commit_wait delay - allows all clocks to catch up

Add $100 to balance  
at time = 1107

Knowing the Max Skew Is Important with HLCs

Sometimes, nodes may not exchange RPCs for awhile, increasing the skew

HLC time sync is slow



45© 2019 All rights reserved.

Rare scenarios, but safety first!

Recommendation: set max_skew to large enough value

max_skew = 500ms # suggested default



46© 2019 All rights reserved.

Integrating Raft with
Hybrid Logical Clocks



47© 2019 All rights reserved.

Raft Consensus: 

● Per tablet

● Issues Raft Sequence ID, which is a 

purely logical sequence number

● Single row transactions

● Raft sequence id is monotonically 

increasing

Cluster: 

● Per node

● Issues HLC timestamp, which can 

be compared across nodes

● Distributed transactions 

● HLC timestamp is monotonically 

increasing

Raft vs Hybrid Logical Clock (HLC)



48© 2019 All rights reserved.

Raft Consensus: 

● Per tablet

● Issues Raft Sequence ID, which is a 

purely logical sequence number

● Single row transactions

● Raft sequence id is monotonically 

increasing

Cluster: 

● Per node

● Issues HLC timestamp, which can 

be compared across nodes

● Distributed transactions 

● HLC timestamp is monotonically 

increasing

Raft vs Hybrid Logical Clock (HLC)

Motonicity allows these two ids to be correlated



49© 2019 All rights reserved.

Tablet #1 Tablet #2

Raft Log for tablet #1

Txn1: Raft-Id=100,
      HLC=(1000, 32),
      <txn 1 details>

Txn5: Raft-Id=101,
      HLC=(1005, 21),
      <txn 5 details>

Txn7: Raft-Id=102,
      HLC=(1100, 75),
      <txn 7 details>

…

Raft Log for tablet #2

Txn2: Raft-Id=1200,
      HLC=(1004, 14),
      <txn 2 details>

Txn7: Raft-Id=1201,
      HLC=(1100, 75),
      <txn 7 details>

Txn8: Raft-Id=1202,
      HLC=(1105, 91),
      <txn 8 details>

…



50© 2019 All rights reserved.

Tablet #1 Tablet #2

Raft Log for tablet #1

Txn1: Raft-Id=100,
      HLC=(1000, 32),
      <txn 1 details>

Txn5: Raft-Id=101,
      HLC=(1005, 21),
      <txn 5 details>

Txn7: Raft-Id=102,
      HLC=(1100, 75),
      <txn 7 details>

…

Raft Log for tablet #2

Txn2: Raft-Id=1200,
      HLC=(1004, 14),
      <txn 2 details>

Txn7: Raft-Id=1201,
      HLC=(1100, 75),
      <txn 7 details>

Txn8: Raft-Id=1202,
      HLC=(1100, 32),
      <txn 8 details>

…

Raft Ids are issued per-tablet and 
are not correlated across tablets.

HLCs are correlated across tablets 
because of distributed time sync



51© 2019 All rights reserved.

DocDB:
Distributed Transactions



52© 2019 All rights reserved.

Fully Decentralized Architecture

• No single point of failure or bottleneck
• Any node can act as a Transaction Manager

• Transaction status table distributed across multiple nodes
• Tracks state of active transactions

• Transactions have 3 states    
• Pending
• Committed
• Aborted

• Reads served only for Committed Transactions
• Clients never see inconsistent data



53© 2019 All rights reserved.

Isolation Levels

• Serializable Isolation
• Read-write conflicts get auto-detected
• Both reads and writes in read-write txns need provisional records
• Maps to SERIALIZABLE in PostgreSQL

• Snapshot Isolation
• Write-write conflicts get auto-detected
• Only writes in read-write txns need provisional records
• Maps to REPEATABLE READ, READ COMMITTED & READ UNCOMMITTED in PostgreSQL

• Read-only Transactions 
• Lock free



54© 2019 All rights reserved.

Distributed Transactions - Write Path 



55© 2019 All rights reserved.

Distributed Transactions - Write Path 



56© 2019 All rights reserved.

Distributed Transactions - Write Path 



57© 2019 All rights reserved.

Distributed Transactions - Write Path 



58© 2019 All rights reserved.

Distributed Transactions - Write Path 



59© 2019 All rights reserved.

Distributed Transactions - Write Path 



60© 2019 All rights reserved.

Was that interesting?

If so, join us on Slack for more:

yugabyte.com/slack

https://www.yugabyte.com/slack


61© 2019 All rights reserved.

Thanks!


