
Planning and Architecture
YugabyteDB on Tanzu
Reference Architecture

Michael James, Solutions Architect

May 5, 2022

YugabyteDB on Tanzu
Reference Architecture
Planning and Operations

Architecture Overview
Cluster layout

Bill of Materials

Design Use-Cases
YugabyteDB Components

Cluster Requirements
Single AZ - Single Cluster
Architectural View
Single Region - Multiple AZs
Architectural View
Multiple Regions - Multiple AZs
Integration with VMware SDDC and Tanzu Services

Multiple Clouds - Multiple AZs
Backup - Recovery with TMC - Data Protection
Integration with VMware SDDC

Backup and Recovery
Monitoring
Logging

Recommended Prerequisites (Multi-AZ)

Overview

Getting Started
Existing Tanzu Kubernetes Cluster

1

Architecture Overview

This document details a reference architecture for deploying YugabyteDB on Tanzu
Kubernetes Grid (TKG). This reference will cover topics such as Kubernetes
requirements and cluster layout for YugabyteDB.

This architecture should give you a path to creating a highly available,
production-grade deployment of YugabyteDB. However you should not feel
constrained by this exact path if your specific use cases lead you to a different
deployment architecture. Design decisions in this architecture reflect the main
design issues and the rationale behind a chosen solution path and if necessary can
help provide rationale for any deviation.

Cluster layout

The level of availability and redundancy required by the workloads being deployed
will determine the topology of the clusters, from a simpler, single cluster running in
just one availability zone, to a more complex deployment of multiple clusters
distributed all over the world, either on a single cloud provider, or across multiple
cloud providers.

2

Bill of Materials

Component Version

Tanzu Kubernetes Grid 1.5.1

Kubernetes 1.22.5

YugabyteDB Anywhere 2.13.0

YCQL CLI 2.11.2.0

This reference architecture was validated using these versions of Tanzu and
Yugabyte solutions that are in scope.

3

Design Use-Cases
Design # Decision Rationalization Ramifications

TKG-001 A single cluster in
one region and
one availability
zone.

Appropriate choice for a
development/test,
non-critical environment
where availability, or loss of
data is of little to no
concern. Primary benefit of
this design is ease of
deployment.

Not an option for
workloads
requiring high
availability,
durability, and
resiliency.

TKG-002 A single cluster in
one region spread
across multiple
availability zones.

Development/test or
production workloads that
need to scale, and require
a level of availability and
durability in the event of a
localized failure to a single
data center, but does not
need to be distributed
across a wider region.

A regional failure
makes this option
unacceptable for
broader,
distributed
workloads.

TKG-003* Multiple clusters
spread across
multiple regions
across multiple
availability zones.

Production workloads that
demand the highest level
of availability and
resiliency spanning
geo-locations nationally
and/or internationally.

Maintaining a level
of consistency
across all
deployments
becomes
paramount.

TKG-004* Multiple clusters
spread across
multiple cloud
providers.

Production workloads that
demand the highest level
of resiliency, but unlike
TKG-003, must be
portable across multiple
public cloud providers and
private on-premises
environments.

Highest level of
complexity,
keeping data
consistent.

4

*Use-cases TKG-003 and TKG-004 are currently not supported with Kubernetes without
federation across regions. Tanzu Service Mesh addresses this requirement by grouping all
Kubernetes clusters across regions and/or cloud providers as a single entity under that which
is called a Global Namespace.

YugabyteDB Components

The following components are installed and run on one or more Kubernetes clusters.

● YugabyteDB Anywhere, the management plane for hosting the console for
creating and managing YugabyteDB Universes. YugabyteDB Anywhere was
formerly referred to as Yugabyte Platform.

● YugabyteDB Universe(s), collection of nodes, or cluster(s), that host the
YB-Master and YB-TServer components. It is the environment that defines the
resources necessary to host a sharded database.

● YB-Master, maintains system metadata, location and number of tables and
access controls, DDL, replication, and load balancing operations.

● YB-TServer, handles input/output operations to data partitioned and
replicated across the cluster. APIs are exposed via standard ports applicable to
the underlying database technology, i.e., PostgresQL (5433) and Cassandra
(9042).

High-level overview of a YugabyteDB Universe.

https://docs.yugabyte.com/latest/architecture/

5

https://docs.yugabyte.com/latest/architecture/

Cluster Requirements

General Infrastructure Recommendations

Storage

● Local SSD (recommended), lowest latency, highest performance.
● Two disks per node.
● When storage requirements increase, the recommendation is to add more

nodes, not increase size of disks.
● vSAN Flash

“Mount settings - XFS is the recommended filesystem. - Use the noatime
setting when mounting the data drives. - ZFS isn’t currently supported and is
on the roadmap. - NFS isn’t currently supported and is on the roadmap.”

“So XFS can come from VMDK on any VMFS datastore really”

6000 IOPS

SAN mounted, vSAN

Compute

Use the following CPU/RAM/DISK ratio as a general guideline.

8 vCPU / 16 GB RAM / 400 GB storage

As shown in the diagram above, the number of nodes should be equal to or
greater than the number of yb-master pods so they can be distributed evenly.
The number of yb-masters equates to the replication factor of the database.
The replication factor will be the number of redundant copies, or replicas, of
the database.

For more information, refer to the deployment checklist here.

https://docs.yugabyte.com/preview/deploy/checklist/

6

https://docs.yugabyte.com/preview/deploy/checklist/

Single AZ - Single Cluster

The following components and their respective specifications are required for
hosting a minimal installation of YugabyteDB Anywhere and one YugabyteDB
Universe.

It is generally recommended for production environments to install YugabyteDB
Anywhere on its own dedicated cluster. However, for development purposes, the
suggestion made here is to host on the same cluster, in its own namespace.

1 TKG Management Cluster

● 1 control plane node
● 1 worker node

1 Tanzu Kubernetes Cluster

● 1 control plane node
● 4* worker nodes (1 node = 8 CPU, 32GB RAM, 80GB Storage)

*The size of the nodes will determine the number of nodes needed, or vice
versa. The larger the node size, the number of nodes can be reduced.

YugabyteDB

● YugabyteDB Anywhere
● At least 1 Universe

Kubernetes requirements:

1. Load Balancer to YB-TServer
2. Default storage class, default TKG 80GB is good starting point
3. At least 8GB per node

7

Architectural View

NOTE: The yb-platform can be run in the management cluster.

Single Region - Multiple AZs

The following components and their respective specifications are required for
hosting a moderately available installation of YugabyteDB Anywhere and at least one
or more YugabyteDB Universes.

It is generally recommended for production environments to install YugabyteDB
Anywhere on its own dedicated cluster, which will be followed here. No more than
one AZ is typically needed.

Tanzu Management Cluster

● 3 control plane nodes
● 3 worker nodes

8

Tanzu Kubernetes Cluster

● 3 control plane nodes
● 4* worker nodes (1 node = 8 CPU, 32GB RAM, 80GB Storage)

*The size of the nodes will determine the number of nodes needed, or vice
versa. The larger the node size, the number of nodes can be reduced.

YugabyteDB

● YugabyteDB Anywhere
● At least 1 Universe

Kubernetes requirements:

4. Load Balancer to YB-TServer
5. Default storage class (80GB is good starting point)
6. At least 8GB per node

9

Architectural View

10

Backup and Recovery

Each underlying database has its own mechanism for backing up data. The following
sections outline options for simple export of data to an automated generation of
snapshots of the data.

KUBERNETES

The recommended backup solution for YugabyteDB Anywhere itself is Velero. This
will enable backups of metadata of Universes admins create and manage.

EXPORT

Use this option to import the data into another database solution than the source.

Cassandra

For backups, use the ycqlsh CLI in the bin directory of the YugabyteDB package with
either of the following two options.

● DESCRIBE (DESC), copies the schema for either a single keyspace or all
keyspaces within the database to an output file.

● COPY TO, copies the actual data rows to an output file.

To restore, use the same ycqlsh CLI with either of the following options.

● SOURCE, for example, ycqlsh -e “SOURCE ‘my-describe-backup.cql’”
● COPY FROM, loads data into a keyspace schema that was output as a file

using the COPY TO command.

PostgresQL

Two options are available in the postgres/bin directory of the YugabyteDB package..

● ysql_dump, backs up a single database into an SQL script file. This file will also
be used for the restoration of the database.

● ysql_dumpall, backs up all databases in a single universe, including all of the
associated metadata.

Use the ysqlsh CLI with the output file from one of the above commands to restore
the database.

For more information, refer to the YugabyteDB documentation.

11

https://docs.yugabyte.com/preview/manage/backup-restore/export-import-data

SNAPSHOT

Snapshots of the data can be generated on-demand or on an automated schedule
with the yb-admin CLI. These snapshots are stored alongside the data in the same
cluster by default, in which case, the ability to restore to a specific point in time, or
can be stored in dedicated storage, such as NFS, or public storage service, such as
AWS S3 or Azure Blob Storage.

For more information, refer to the YugabyteDB documentation.

https://docs.yugabyte.com/preview/manage/backup-restore/snapshot-ysql

YugabyteDB Anywhere provides API and UI for seamless integration with external
storage.

https://docs.yugabyte.com/preview/yugabyte-platform/back-up-restore-universes

POINT-IN-TIME RECOVERY

Point-in-time recovery (PITR) minimizes the RPO by restoring to the latest known
working state of a database, as opposed to a time of snapshot creation.

PITR is based on snapshots that are automatically created and stored in the cluster
alongside the data.

For more information, refer to the YugabyteDB documentation.

https://docs.yugabyte.com/preview/manage/backup-restore/point-in-time-recovery

Monitoring

The following are options for monitoring real-time universe metrics and statistics.

● YugabyteDB Anywhere, includes embedded charts and graphs showing
latency, number of I/O operations, etc…

12

https://docs.yugabyte.com/preview/manage/backup-restore/export-import-data
https://docs.yugabyte.com/preview/manage/backup-restore/snapshot-ysql
https://docs.yugabyte.com/preview/yugabyte-platform/back-up-restore-universes/
https://docs.yugabyte.com/preview/manage/backup-restore/point-in-time-recovery

● Tanzu Observability, an advanced service for collecting metrics, traces, and
logs. Includes 200+ integrations with the most popular services and libraries,
including Prometheus, PostgresQL, and Cassandra.

● Prometheus, component for collecting host metrics and outputting to
charting components.

Logging

The yugabyte-data storage volume contains subdirectories per each node of a
cluster. Each component will have a log directory specific to its function.

● yb-master, yugabyte-data/disk1/yb-data/master/logs/
● yb-tserver, yugabyte-data/disk1/yb-data/tserver/logs/

13

Deployment

Tanzu-Yugabyte

Recommended Prerequisites (Multi-AZ)

Component Version

Tanzu Kubernetes Grid 1.5.1

Kubernetes 1.22.5

Helm 3.4 or later

YugabyteDB (trial required) 2.13.0

YSQLSH CLI
YCQLSH CLI

2.11.2.0

Python 2.7 or later

Instructions and installation scripts can be downloaded from the following
repository.

https://github.com/nycpivot/tanzu-yugabyte

Details can be found at the following YugabyteDB docs.

https://docs.yugabyte.com/latest/

https://docs.yugabyte.com/latest/quick-start/install/kubernetes/

14

https://github.com/nycpivot/tanzu-yugabyte
https://docs.yugabyte.com/latest/
https://docs.yugabyte.com/latest/quick-start/install/kubernetes/

Overview

The installation process basically consists of 3 stages (assuming pre-existing cluster)..

1. YugabyteDB Anywhere (optional), the components that offer a graphical
user-interface management portal for creating and administering universes.
YugabyteDB Anywhere was formerly referred to as Yugabyte Platform.

2. Universe, defines the resource requirements for the underlying database,
such as, storage type and size,, number of master (yb-master) and tablet
(yb-t-server) servers, and required resources to run, CPU and RAM across the
nodes in a cluster,

3. Database, running scripts with native DDL, DML appropriate to the
underlying database platform (relational or non-relational).

Getting Started

From an operator’s machine, clone the following repository.

https://github.com/nycpivot/tanzu-yugabyte

Existing Tanzu Kubernetes Cluster

YugabyteDB Anywhere (optional)

https://docs.yugabyte.com/latest/yugabyte-platform/install-yugabyte-platform/install-softwar
e/kubernetes/

01-yugabyte-platform-install.sh

yb-storage.yaml

1. In the terminal window, set the context to your cluster.

kubectl config use-context [cluster_context]

2. Create the following namespace.

kubectl create namespace yb-platform

15

https://github.com/nycpivot/tanzu-yugabyte
https://docs.yugabyte.com/latest/yugabyte-platform/install-yugabyte-platform/install-software/kubernetes/
https://docs.yugabyte.com/latest/yugabyte-platform/install-yugabyte-platform/install-software/kubernetes/

3. Create a secret necessary to run a trial version of the platform.

cat <<EOF | tee tanzu-yugabyte/yugabyte-k8s-secret.yaml
apiVersion: v1
kind: Secret
metadata:
name: yugabyte-k8s-pull-secret

data:
.dockerconfigjson: $yugabyte_secret

type: kubernetes.io/dockerconfigjson
EOF

4. Apply the secret.

kubectl apply-f tanzu-yugabyte/yugabyte-k8s-secret.yaml -n yb-platform

5. Add the helm chart to the repository and install it on the cluster.

helm repo add yugabytedb https://charts.yugabyte.com

helm install yugabyte-platform yugabytedb/yugaware --version 2.13.0 -n
yb-platform --wait

6. It’s worth checking that all four containers are running in the pod.

kubectl get pods -n yb-platform

7. Retrieve the load balancer url hosting the management dashboard and verify
it’s accessible.

kubectl get svc -n yb-platform

Navigating to this link will prompt for credentials.

16

https://charts.yugabyte.com

8. Apply the storage class and persistent volumes required for the yb-master and
yb-tserver pods. You may want to adjust the number and size of these based
on your needs.

kubectl apply -f tanzu-yugabyte/yb-storage.yaml

9. Confirm both storage class and persistent volumes.

kubectl get sc

kubectl get pv

Configuring YugabyteDB Anywhere

Once logged in to the platform, follow these steps to configure a cluster to deploy
Universes.

1. Configuration, upload the kubeconfig and secret from the last section to the
cluster, define regions and zones.

2. Universe, attaches a configuration created in step 1, defines the topology in
the cluster for a database, including the number and distribution of pods, their
replication factor, enable/disable supported modes (PostgresQL and/or
Cassandra), YSQL and/or YCQL, respectively, and security related settings for
these endpoints.

Once a Universe is created and configured, it will create a namespace in the cluster
of the same name. The following screenshot shows the yb-masters load balancer
service, and the yb-tserver load balancer service.

17

The external IP and port of the yb-tserver service will be used for executing DDL and
DML scripts with the corresponding CLI (ysqlsh or ycqlsh).

NOTE: The next section outlines the configuration of a universe in shell script using
helm, with the same result of the above section “Configuring YugabyteDB
Anywhere”.

Universe

This section creates the environment and resources in which your database will run.

02-yugabyte-universe-create.sh (single availability zone)

03-yugabyte-multiverse-create.sh (multi availability zones - preferred)

1. Execute the script to generate the universe. The script defines the resources
you want the universe to use.

2. The output from running this command should list similar results following:

3. Run the first command to ensure the number of pods defined in the above
script matches those running.

kubectl --namespace tanzu-yugabyte-multiverse get pods -o wide

Confirm the pods are distributed evenly across the nodes. There are affinity
rules to prevent pods with the same purpose of being scheduled together. For

18

example, yb-master–0, yb-master-1, and yb-master-2 should not run together.
LIkewise, yb-tserver-0, yb-t-server-1, and yb-tserver-2.

4. Run the following command to list the services that are used to open the
master and tablet dashboards, and the endpoints and ports used for
communicating with their respective relational and/or non relational
databases.

kubectl get svc --namespace tanzu-yugabyte-multiverse

The yb-master-ui is exposed via a load balancer at the specified port.

The yb-tserver-service exposes the underlying databases via their standard
ports.

5. Commands 4 & 5 from step 2 above after running the helm install command
can be used to exec into a yb-tserver pod and execute DDL and DML
commands manually. The pods contain the YSQLSH and YCQLSH CLI tools for
this purpose. For more details, consult the docs at:
https://docs.yugabyte.com/latest/quick-start/explore/ysql/#kubernetes

Download the same CLI tools on your operator machine and run the schema
scripts part of the demo applications in the next section.

19

https://docs.yugabyte.com/latest/quick-start/explore/ysql/#kubernetes

Databases

This section will use the CLI tools packages with YugabyteDB to communicate with
the yb-tserver and relevant ports to create databases, schemas, and perform CRUD
operations.

Download YugabyteDB

The source of the package run in the following script can be found at the following
link.

https://download.yugabyte.com/

tanzu-yugabyte/10-database-prereqs.sh

Create Databases

Run the following script to create table schemas for the yugastore sample
application, and a simple .NET load testing application. It also loads sample data for
the yugastore application.

tanzu-yugaybyte/11-databases-create.sh

The source code of the yugastore sample application can be downloaded from here.

https://github.com/yugabyte/yugastore-java

The load balancer url of the yb-tserver-service is listed. Copy and paste that into the
prompt. The result of the script should have the following output.

CREATE TABLE

CREATE TABLE

This will be followed by the results of sample data being inserted. A lot of errors
resembling the following will be encountered similar to the following.

20

https://download.yugabyte.com/
https://github.com/yugabyte/yugastore-java

Nevertheless, the overall success of the script that data has been inserted depends
on the results resembling the following.

Sample Apps

There are two sample applications.

● Yugastore, this is built and maintained by Yugabyte. It is a java application
that communicates with both supported backend databases, PostgresQL and
Cassandra.

● .NET, this app continuously writes and reads records to and from an employee
PostgresQL table. It is a simple means of observing the resiliency of
YugabyteDB when pods, nodes, and entire availability zones are brought
offline.

21

