
YugabyteDB
Backup and
Restore

white paper

A Bird’s Eye View of Data Protection Strategies
and Capabilities

Table of Contents

Introduction

Why Organizations Need a Backup and DR Strategy

Seamless Protection with Distributed SQL Databases

YugabyteDB Backup Options

 Method 1: SQL/CQL Export

 Method 2: Distributed Snapshots

 How Distributed Snapshots Work

 In-cluster vs. off-cluster

 Method 3: Point-in-Time Recovery (PITR)

 How Point-in-Time Recovery Works

Conclusion

1

1

2

3

3

4

5

5

5

6

7

iYugabyteDB Backup and Restore

1Migrating From Monolithic to Cloud Native Operational Databases

Introduction

App developers, IT leaders and everyone in
between are involved in transforming
companies into data-driven digital
businesses that can thrive in the face of
growing uncertainty. Data plays a critical
role in these businesses and the new
services they offer. Protecting that data and
eliminating any disruptions that might
impact customer experiences is critical.

An intelligent, distributed data layer is
becoming the first line of defense against
challenges like user errors, cloud outages,
and even natural disasters. While
implementing a modern data layer like
YugabyteDB is a key first step, it’s still
important to have a solid backup and
restore strategy in place for those rare
instances they are required.

Why Organizations Need a
Backup and DR Strategy

In our data-centric world, data is an
essential part of running any business, from
the largest enterprises to a local bicycle
shop. The loss of that data can result in
sleepless nights, frustrated customers, and
the loss of revenue. For these reasons,
most businesses rely on some form of data
backup and recovery to avoid any data loss,
or at least to minimize the negative impact
in the event of some theft, damage or
unexpected disaster.

Organizations implement backup and
recovery strategies to protect their data
against a wide range of issues that can put
primary data at risk. Some of the main
reasons include:

For traditional, monolithic databases, a
complete backup and DR strategy was
essential to protect against any of the
above scenarios. Whenever they occurred,
complex processes were required and
teams had to manually address numerous
issues, including reconciling data changes
between various systems.

For modern, distributed SQL databases like
YugabyteDB some of these common
scenarios are addressed natively by the
distributed architecture—helping
organizations avoid the manual, expensive
recovery process. The rest of this paper
explores the advantages of distributed SQL
databases for high resiliency, what role
backup and recovery strategies still play,
and what are the various backup options
available in YugabyteDB.

 User error or human-caused events like
a malicious attack

 Major failures including hardware or
software failures, data corruption, cloud
outage or other natural disaster impacts

 Severe disasters, which are rare, but
involve cluster failures or simultaneous
failures across systems

 Compliance and governance often
require certain strategies in place to
protect the end consumer or user

2Migrating From Monolithic to Cloud Native Operational Databases

Seamless Protection with
Distributed SQL Databases

Unlike traditional single-instance
databases, YugabyteDB is a distributed SQL
database whose core architecture was built
for fault tolerance and high availability. By
maintaining three or more copies of the
data across multiple nodes, data regions or
clouds, YugabyteDB makes sure no data
losses occur in the event a single node or
even an entire data region becomes
unavailable.

Thanks to the distributed nature of
YugabyteDB, organizations no longer need
to rely on classic backup and recovery
processes for many common failures. As
with cloud native applications and
microservices, YugabyteDB automatically
replicates data synchronously within a
cluster so that hardware failures, network
issues, cloud outages, and more, are
seamlessly handled.

Beyond just replicating data, YugabyteDB
includes native automatic failover and
repair, meaning that the system will self-
heal in the event of any of these common
failures. Along with self-healing, the system
will automatically and intelligently re-
balance data across the available nodes.
When new nodes are added or recovered,
then the system rebalances again
seamlessly.

Resilient and strong consistent
across failure domains

1. Single Region, Multi-Zone.
Availability
Zone 1

Availability
Zone 3

Availability
Zone 2

Consistent across zones no WAN latency
but no Region-level failover/repair

2. Single Cloud, Multi-Region

Region 1

Region 2 Region 3

Consistent across regions with auto
Region-level failover/repair

3. Multi-Cloud, Multi-Region

Cloud 1

Cloud 2 Cloud 3

Consistent across cloudswith auto
Cloud-level failover/repar

3Migrating From Monolithic to Cloud Native Operational Databases

As a result of this modern and distributed
architecture, backups with YugabyteDB
play a smaller role than in the past;
however, there are still situations where a
backup and recovery process is needed
and they should always be part of any plan.
A backup and recovery strategy is still
needed for these three key scenarios:

1.   

2.         

3.

Fix User Error: Recover from a user or
software error, such as an accidental
table removal or other permanent
operations that were not intended.

Recover from Severe Disaster: In the
event of a severe disaster scenario, like
a full cluster failure or a simultaneous
outage of multiple data regions
(probability of such scenarios is
extremely low), then a proven backup
and restore process is needed. Despite
the low odds of facing these severe
scenarios, it is still recommended to
maintain a way to recover from them.

Address Regulation Requirements:
Maintain a remote copy of the data as
required by data protection regulations.

In general, the day-to-day protection of the
distributed database in the event of a down
node or region outage are seamlessly
handled by the distributed nature of
YugabyteDB. Multiple copies are stored
based on the user defined levels of
protection required, and the database
automatically rebalances data as needed to
ensure optimal performance and protection
with the available resources.

YugabyteDB Backup Options

As stated above, the best practice is to
always have a data backup and restore
process defined and tested to cover those
additional scenarios that, although less
common than classic outages and hardware
failures, can still happen. YugabyteDB
comes with three features that allow users
to set up a data backup strategy:

 SQL/CQL export
 Distributed snapshots
 Point-in-time-recovery

Method 1: SQL/CQL Export

Leveraging core capabilities derived from
Postgres and Cassandra APIs, YugabyteDB
allows exporting data to a SQL or CQL
script. Use of this process is recommended
only if you intend to restore the exported
data on a database other than YugabyteDB
or if having data in SQL/CQL format is a
requirement for other external reasons (e.g.,
regulations).

For YSQL data, export is performed via

 and scripts. The
former exports a single database, while the
latter exports all databases along with
global objects like users, roles, and
permissions.

ysql_dump ysql_dumpall

./postgres/bin/ysql_dump -d <bd-
name> > <file>

https://docs.yugabyte.com/preview/admin/ysql-dump/
https://docs.yugabyte.com/preview/admin/ysql-dumpall/

4Migrating From Monolithic to Cloud Native Operational Databases

For YCQL data, export is performed via
 and CQL commands.DESCRIBE COPY TO

For most users, the distributed snapshots
capability described in the next section is
the recommended way to create backups
as they are more efficient and robust.

./bin/ycqlsh -e
 > <file>

“DESC KEYSPACE
<keyspace_name>”

Method 2: Distributed
Snapshots

The most efficient and robust way to
backup the data stored in YugabyteDB is to
create a distributed snapshot. A distributed
snapshot is a consistent cut of the data
taken across all the nodes in the cluster
that can be created either on demand or as
a part of a pre-defined schedule.
Distributed snapshots provide a higher level
of efficiency versus a simple SQL/CQL
Export because a snapshot is created
independently on every node, which makes
the process highly scalable.

A newly created snapshot is kept in-cluster
and stored on the same storage volumes
where the data itself resides. If required,
you can export and copy any snapshot to
an external storage.

Functionality is provided by the
script. A snapshot is created for a single
database (YSQL) or a single keyspace
(YCQL). With YCQL, you can also create a
snapshot for a specific table.

yb-admin

Snapshot A Snapshot A

Snapshot A

AWS S3

Google Cloud Storage

Azure Blob

NFS

In addition, YugabyteDB Anywhere provides
an API and UI for backup automation.
YugabyteDB Anywhere helps organizations
to quickly and easily deploy a self-managed
DBaaS in any environment (public, private
and hybrid cloud) with built-in automation
to deploy, scale, and monitor YugabyteDB
clusters at scale. Supported storages for
the backup automation are AWS S3, Google
Cloud Storage, Azure Blob, and generic
NFS.

https://docs.datastax.com/en/cql-oss/3.x/cql/cql_reference/cqlshDescribe.html
https://docs.datastax.com/en/dse/5.1/cql/cql/cql_reference/cqlsh_commands/cqlshCopy.html
https://docs.yugabyte.com/preview/admin/yb-admin/#backup-and-snapshot-commands

5Migrating From Monolithic to Cloud Native Operational Databases

In regards to incremental backups,
YugabyteDB always creates an efficient full
snapshot of all the data, eliminating the
need and extra work required to provide
incremental in-cluster snapshots. The
underlying mechanism is efficient enough
both in terms of speed and space
consumption to not benefit in any
meaningful way from an incremental
approach to in-cluster snapshots. The
Yugabyte team is continuing to investigate
ways to further enhance distributed
snapshots, such as providing incremental
off-cluster backups in the future.

How Distributed Snapshots Work

Distributed snapshots in YugabyteDB are
performed in-cluster, meaning that they are
created locally by the

 service. The snapshots
are stored in the same storage volumes
where the actual data is also stored.

When a user requests a snapshot, the
request is sent to every YB-TServer. Each
YB-TServer then goes through all local
tablets that correspond to the database
being backed up and creates hard links to
the relevant data files. The system also
marks the current hybrid timestamp and
assigns it to the snapshot.

The distributed snapshot creation completes
quickly and efficiently as it requires minimal
coordination, is executed locally on every
node (and therefore is scalable), and does
not imply any file copying.

Yugabyte Tablet
Server (YB-TServer)

In-cluster vs. off-cluster

The speed and scalability of distributed
snapshots comes with a price of inflated
requirements for the data storage. Since all
snapshots are stored in-cluster, they utilize
the primary cluster storage. To overcome
the higher storage requirements, any
snapshot can be moved to a cheaper
external storage (such as S3). Moving the
snapshots can be done either manually or
programmatically by utilizing the API and UI
in YugabyteDB Anywhere.

Method 3: Point-in-Time
Recovery (PITR)

The third and final backup and restore
strategy for YugabyteDB is point-in-time
recovery (PITR). PITR in YugabyteDB
enables recovery from a user or software
error, while minimizing recovery point
objective (RPO), recovery time objective
(RTO), and overall impact on the cluster. It
works by restoring to the latest known
working state of a database, as opposed to
a time of snapshot creation.

PITR is particularly useful in the following
two scenarios:

 DDL errors, such as an accidental table
removal

 DML errors, such as execution of an
incorrect update statement against one
of the tables

https://docs.yugabyte.com/preview/architecture/concepts/yb-tserver/
https://docs.yugabyte.com/preview/architecture/concepts/yb-tserver/

6Migrating From Monolithic to Cloud Native Operational Databases

Given these common scenarios, you
typically know when the data was
corrupted and would want to restore to the
closest possible uncorrupted state. With
PITR, you can achieve that by providing a
restore timestamp. You can specify the time
with the precision of up to 1 microsecond,
far more precision than is possible with the
regular snapshots that are typically taken
hourly or daily.

While PITR is primarily based on distributed
snapshots, there are two additional
requirements that need to be satisfied in
order to restore to a specific point in time:

Flashback is a feature that allows you to
rewind the data back in time. At any moment,
YugabyteDB stores not only the latest state
of the data, but also the recent history of
changes. With flashback, you can rollback to
any point in time in the history retention
period. The history is also preserved when a
snapshot is taken, which means that by
creating snapshots periodically, you
effectively increase the flashback retention.

For example, if your overall retention target
for PITR is 3 days, you can use the following
configuration:

By default, the history retention period is
controlled by the

. The flag is applied cluster-wide to every
YSQL database and YCQL keyspace.
However, when PITR is enabled for a
database or a keyspace, YugabyteDB adjusts
the history retention for that database/
keyspace based on the interval between the
snapshots. You are not required to manually
set the cluster-wide flag in order to use PITR.

There are no technical limitations on the
retention target. However, it's important to
keep in mind that by increasing the number
of snapshots stored, you also increase the
amount of space required for the database.
The actual overhead depends on the
workload, so we recommend estimating it by
running tests based on your applications.

 History retention interval is 24 hours
 Snapshots are taken daily
 Each snapshot is kept for 3 days

history retention interval
flag

The scope of PITR is always a single
database (YSQL) or a single keyspace
(YCQL). Currently, PITR is not supported for
a single table for either YSQL or YCQL.
Functionality is provided by the
script.

yb-admin

1.

2.

Snapshots need to be created as a part
of a schedule.

Snapshots need to be kept in-cluster.
You can still copy them to an external
storage, but removing them from the
in-cluster storage will prevent you from
using PITR.

How Point-in-Time Recovery Works

Let’s explore more of the details of how PITR
in YugabyteDB works. PITR is actually based
on a combination of two key features: the
flashback capability and periodic distributed
snapshots.

https://docs.yugabyte.com/preview/reference/configuration/yb-tserver/#timestamp-history-retention-interval-sec
https://docs.yugabyte.com/preview/reference/configuration/yb-tserver/#timestamp-history-retention-interval-sec
https://docs.yugabyte.com/preview/admin/yb-admin/#backup-and-snapshot-commands

Looking back at our example above, the
configuration ensures that at any moment
there is a continuous change history
maintained for the last 3 days. When you
trigger a restore, YugabyteDB will pick the
closest snapshot to the timestamp you
provide, and then use flashback within that
snapshot.

Let's say the snapshots are taken daily at
11:00 PM, current time is 5:00 PM on April

14th, and you want to restore to 3:00 PM on
April 12th. In this case, YugabyteDB:

1.   

2.

Locates the snapshot taken on April 12th
(which is the closest snapshot taken after
the restore time), and restores that
snapshot.

Flashes back 8 hours to restore to the
state at 3:00 PM (as opposed to 11:00 PM,
which is when the snapshot was taken).
a

Snapshot #3

04-11

5:00PM

04-11

11:00PM

04-12

3:00PM

04-12

11:00PM

04-13

11:00PM

04-14

5:00PM

Snapshot #2 Snapshot #2 Current TimeRestore Time

Step2 : Flashback Step1 : Restore the snapshot

Retention target: 3 days

Conclusion

While this paper focused on the options to backup and restore YugabyteDB, it’s important to
first recognize that the fundamental benefits of a modern, distributed database architecture
are that single node, region or even cloud failures are seamlessly handled without the need
for expensive and complex recovery options typical to monolithic database solutions.

However, some scenarios still exist that require backup and restore. This means it’s highly
recommended that you are familiar with these strategies and have a defined process in place.

www.yugabyte.com contact@yugabyte.com |
Get in Touch

https://www.yugabyte.com/
mailto:contact@yugabyte.com
https://github.com/yugabyte/yugabyte-db
https://github.com/yugabyte/yugabyte-db
https://yugabyte-db.slack.com/join/shared_invite/zt-xbd652e9-3tN0N7UG0eLpsace4t1d2A#/shared-invite/email
https://yugabyte-db.slack.com/join/shared_invite/zt-xbd652e9-3tN0N7UG0eLpsace4t1d2A#/shared-invite/email
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/yugabyte/mycompany/
https://www.linkedin.com/company/yugabyte/mycompany/
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw

The most efficient way to set up a backup strategy for YugabyteDB is to create a distributed
snapshot schedule based on your retention requirements. A snapshot created as part of the
schedule can be used to restore to the moment of its creation, or – as long as it is kept in-
cluster – to a point in time that represents the latest known working state of the database
using PITR.

If you intend to restore the data on a database other than YugabyteDB, or need to store data
in a human-readable format (SQL/CQL/CSV), use the SQL/CQL export functionality.

www.yugabyte.com contact@yugabyte.com |
Get in Touch

© 2022 Yugabyte. All rights reserved.

Get Started Today

For more information on YugabyteDB backup and restore options, reach out directly to the
, follow us on or join our .

You can also download YugabyteDB for free .

Yugabyte team LinkedIn Community Slack

here

https://www.yugabyte.com/
mailto:contact@yugabyte.com
https://github.com/yugabyte/yugabyte-db
https://github.com/yugabyte/yugabyte-db
https://yugabyte-db.slack.com/join/shared_invite/zt-xbd652e9-3tN0N7UG0eLpsace4t1d2A#/shared-invite/email
https://yugabyte-db.slack.com/join/shared_invite/zt-xbd652e9-3tN0N7UG0eLpsace4t1d2A#/shared-invite/email
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://twitter.com/Yugabyte?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.linkedin.com/company/yugabyte/mycompany/
https://www.linkedin.com/company/yugabyte/mycompany/
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw
https://www.yugabyte.com/contact/
https://www.linkedin.com/company/yugabyte/
https://communityinviter.com/apps/yugabyte-db/register
https://www.yugabyte.com/yugabytedb/

