
© 2024 YUGABYTE, INC. All rights reserved.
For additional information about our portfolio of services,
contact your YugabyteDB expert at yugabyte.com/contact.

3 Ways to Scale
PostgreSQL
A Quick Peek at Distributed PostgreSQL

PostgreSQL is is a relational database
designed for single-server deployments
that lacks the capabilities of distributed
databases. Typically, a 'distributed'
PostgreSQL setup takes one of three forms.

Multi-Master with
Asynchronous Replication
Provision multiple standalone PostgreSQL
instances, with each storing a full data set
and handling reads and writes. Instances
replicate changes asynchronously.

Pros

+ Scale reads and writes.

Improve latency in selected locations +

Cons

– Data con�icts can occur when using
standard data types.

Data volume is constrained by the capacity
of a single database server.

Upgrading to a larger server when data
exceeds capacity can result in longer
upgrade cycles, downtime, and reduced
availability.

–

–

02

03

01

Multi-Master Sharded
PostgreSQL with a Coordinator
Data is sharded across multiple standalone
PostgreSQL instances, with a coordinator
node managing application connections
and routing requests.

Pros

+ Scale data and read/write workloads
horizontally.

Design con�gurations to meet speci�c
availability SLAs, RPO, and RTO goals.

Good for multi-tenant apps and real-time
analytics.

+

+

Cons

–

–

Scaling process is not fully automated.
Manual shard rebalancing may be necessary.

Incomplete HA solution, requiring extra
components for failover, failback,
and load balancing.

Limitations for OLTP workloads. Missing
suppo� for foreign/unique keys and
eventually consistent cross-shard
transactions.

–

Multi-Master Shared-
Nothing PostgreSQL
Utilizes a true distributed database,
which is feature- and runtime-compatible
with PostgreSQL.

Pros
+

+

+

+

Cons
– Ce�ain application workloads and

queries may need to be optimized to
achieve greater pe�ormance within
distributed database clusters.

Automatically scales data and read/write
workloads (ve�ically and horizontally).

Inherently fault-tolerant.

Ensures RPO=0 and RTO between
3-15 seconds.

Eliminates many PostgreSQL
maintenance tasks like vacuuming and
managing transaction ID wraparounds.

Ready to learn more about distributed PostgreSQL?
Explore How to Scale a Single-Server Database: A Guide to Distributed PostgreSQL
for a deeper understanding of these three architectures.

*EDB PGD used for illustrative purposes

*CitusData used for illustrative purposes

*YugabyteDB used for illustrative purposes

FOLLOW US

https://www.yugabyte.com/tech/database-sharding/
https://dev.to/yugabyte/citus-is-not-acid-but-eventually-consistent-3711
https://dev.to/yugabyte/yugabytedb-recovery-time-objective-rto-with-pgbench-continuous-availability-with-max-15-seconds-latency-on-failure-2po4
https://dev.to/yugabyte/yugabytedb-recovery-time-objective-rto-with-pgbench-continuous-availability-with-max-15-seconds-latency-on-failure-2po4
https://www.yugabyte.com/postgresql/distributed-postgresql/
https://www.yugabyte.com/contact/
https://github.com/yugabyte/yugabyte-db
https://communityinviter.com/apps/yugabyte-db/register
https://www.instagram.com/yugabytedb/
https://twitter.com/yugabyte
https://www.linkedin.com/company/yugabyte
https://www.youtube.com/channel/UCL9BhSLRowqQ1TyBndhiCEw
https://www.twitch.tv/yugabytedb

